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Model Solution

February 6, 2021

Problem 1. Discrete Probabilities

(a) Suppose you throw eight equally weighted six-sided dice. What is the probability that I will get “1”
showing up twice, “3” showing up once, “4” showing up twice, “5” showing up twice, and “6” showing up
once?

Solution: We shall denote the outcome of a roll using the list r = (r1, r2, r3, r4, r5, r6, r7, r8), where ri is
the value rolled by the ith die. Notice that if two entries ri and rj in the list are equal, then exchanging
them in the list leaves r unchanged. This tells us that the number of distinct permuatations is given by
the multinomial coefficient C8

n1...n6
where ni is the number of times that i is rolled. The number of distinct

permutations of the roll r = (1, 1, 3, 4, 4, 5, 5, 6) is then:

C8
201221 =

8!

2!0!1!2!2!1!
= 5040 (1.1)

Thus, there are 5040 distinct ways to roll the combination of numbers. As each roll configuration is equally
probable, the probability of rolling a particular combination is the number of ways to roll that combina-
tion divided by the total number of rolls. Each die can have 6 outcomes, and the value on each die is
independent of the others. The total number of outcomes is subsequently 68 = 1679616.

We conclude that the probability Pr of rolling the listed combination of numbers is 5040/1679616, which
we can write as the percentage:

Pr = 0.3% (1.2)

(b) Suppose you are dealt a hand of five cards from a deck of cards. What is the probability that you will
get exactly three cards of the same value?

First, we shall determine the number of threes of a kind. For a given value, a three of a kind must include
three suits of that value and exclude one. We have four choices of suits and must choose three, and the
number of ways to do this is

(
4
3

)
= 4. There are 13 values with which we can make threes of a kind, so

there are 52 total threes of a kind.

Next, we consider the number of ways we could draw the other two cards. Out of the 49 remaining cards in
the deck, one is the same as the three of a kind drawn. Then, we must draw 2 out of 48 cards. The number
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of ways we can do this is given by the binomial coefficient
(
48
2

)
= 1128. Combined with our previous result,

we see that there are 52× 1128 = 58656 hands with three of a kind.

The probability of drawing three of a kind is equal to the number of ways to draw three of a kind divided
by the total number of possible hands. We are drawing 5 cards out of 52 possible cards, which means there
are

(
52
5

)
= 2598960 hands we can draw. Then, the probability P3 of drawing three cards of the same value

is 58656/2598960, which, as a percentage, is:

P3 = 2.257% (1.3)

(c) Suppose you get exactly three of a kind on the first draw, and you discard the two other cards. You
then draw two more cards to replace these. What is the probability that these two other cards will be a
pair? What is the probability that one of these two other cards will have the same value as the three of a
kind you already have?

There are two cases we must consider. First, we consider the case that the two discarded cards were a
pair. We shall now count the number of ways we can draw a pair. There is one pair of cards with value
of the discarded pair, and no pairs with value of the three of a kind. There are 11 other values for which
all four suits remain, and for each of these values, there are

(
4
2

)
= 6 pairs. Thus, we have 6× 11 + 1 = 67

pairs this way. As there are
(
47
2

)
= 1081 ways we can draw two cards, the probability C1 of drawing a pair

is 67/1081 = 0.062.

Now we consider the case that the discarded cards were not a pair. In this case, there are 10 values with
all four suits remaining. The number of pairs of these cards that can be drawn is 10×

(
4
2

)
= 60. There are

2 values for which three suits remain. The number of pairs of these cards that can be drawn is 2×
(
3
2

)
= 6.

The remaining suit cannot have any pairs of it drawn. Once more, the way we can draw two cards is 1081,
so the probability C2 of drawing a pair is 66/1081 = 0.0611.

Now, we must consider the probability of each of these scenarios happening. Let P1 be the probability of
drawing three of a kind with the other two cards being a pair (the first case) and P2 be the probability
of drawing three of a kind with the other two cards not being a pair (the second case). Then, as we
know that we start with a three of a kind, the probability of starting in case one is P1/(P1 + P2), and
the probability that we started in case 1 and drew a pair is C1P1/(P1 + P2). Similarly, the probability of
starting in case two is P2/(P1 + P2) and the probability of case two happening is C2P2/(P1 + P2). Then,
the total probability P32 of starting with a three of a kind, discarding two cards, and drawing a pair is:

P32 =
C1P1

P1 + P2

+
C2P2

P1 + P2

(1.4)

We must now determine P1 and P2. We shall start with P1. If three of the cards have the same value, then
the other pair could be one of 12 values. Each of these values has four suits, so there are 12 ×

(
4
2

)
= 72

ways that these cards could be a pair. Then, recalling from the previous part that there are 52 threes
of a kind, the probability of drawing five cards, having three be of one value and two be of another, is
72× 52/

(
52
5

)
= 0.00144.
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Next, we shall determine P2. If three of the cards have the same value, then the two remaining cards
must be two distinct values out of the remaining 12. There are

(
12
2

)
= 66 ways that these can be drawn.

There are 4 suits for each of these values, so there are 66× 4× 4 = 1056 ways to draw these pairs. There
are 52 ways to draw a three of a kind, so the probability of drawing three of a kind without a pair is
52× 1056/

(
52
5

)
= 0.0211. Substituting this into our expression for P32, we find:

P32 =
0.00144× 0.062

0.0211 + 0.00144
+

0.0211× 0.0611

0.0211 + 0.00144
(1.5)

We can now evaluate the right hand side to the following percentage:

P32 = 6.12% (1.6)

We shall now determine the probability of drawing a card with the same value as the three of a kind.
There is one card left in the deck that satisfies this criterion, so one of the cards must be this card. There
are 46 other cards we can draw, which leaves us with 46 possible draws to obtain a four of a kind. There
are

(
47
2

)
= 1081 total pairs we can draw, so the probability P4 of obtaining the fourth card is 46/1081,

which, in percentage form, we can write as:

P4 = 4.26% (1.7)

Problem 2. Thermodynamics for a Magnetic System

Suppose we have a magnetic system with the equation of state:

M(T,B) =
CB

T
(2.1)

where M is the magnetization, B is the magnetic field, T is a temperature, and C is some constant. The
energy U of this system is:

U = −MB (2.2)

If the field B is changed by an amount dB, the work dW done by the system is given by:

dW = MdB (2.3)

(a) Show that the heat given to the system under simultaneous changes dB and dM satisfies dQ = −BdM .

The first law of thermodynamics tells us that:

dU = dQ− dW (2.4)

Writing dW in terms of the magnetization and the magnetic field, we find:

dU = dQ−MdB (2.5)

Next, using the product rule, we can differentiate our expression for the internal energy U to find that:
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dU = −MdB −BdM (2.6)

Substituting this into the left hand side of our previous expression and solving for dQ, yields:

dQ = −BdM (2.7)

(b) Using the previous result, find the differential change in the entropy dS and the form S(M) for the
entropy of the system.

The differential dS of the entropy is given by:

dS =
dQ

T
(2.8)

Substituting in our expression from the previous part, we find:

dS = −B

T
dM (2.9)

Now, we can rearrange the equation of state for the system to find:

B =
MT

C
(2.10)

Substituting this into our expression for the entropy, we have:

dS = −M

C
dM (2.11)

Finally, integrating both sides, obtain the following expression for the entropy:

S(M) = S(0)− M2

2C
(2.12)

Problem 3. N Spin-1/2 Systems

Consider a set of N non-interacting spin-1/2 systems in a magnetic field, such that the energies of each
of the individual spins are E1 and E2 respectively.

(a) Find the partition function for this system. Find the average energy U of the total system at a tem-
perature T . From this expression, derive the specific heat CV .

We recognize that the particle number is being held constant, so we considering the canocical ensemble.
Then, the partition function Z is given by:

Z =
∑
states

e−βEs (2.1)
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where Es is th energy of the state. For a state s, let s1 and s2 denote the number of spin systems in the
first state and second state respectively. Then, the energy Es of the state is:

Es = s1E1 + s2E2 (2.2)

Notice that the spin systems must either be in the s1 or the s2 spin state, so we have the constraint that:

N = s1 + s2 (2.3)

Then, our energy Es can be written in the following way:

Es = s1E1 + (N − s1)E2 (2.4)

Substituting this into our expression for the partition function, we find:

Z =
∑
states

e−βs1E1e−β(N−s1)E2 (2.5)

We have written the energy of the state such that it only depends on s1, so we can express the sum over
states as a sum over the allowed values of s1. The minimum allowed value of s1 is zero, and the maximum
allowed value is N . Then:

Z =
N∑

s1=0

g(s1)e
−βs1E1e−β(N−s1)E2 (2.6)

where g is the degeneracy of states for each value of s1. The number of ways that we can have s1 systems
in the first spin state is the number of ways that we can choose s1 systems out of the N total systems, so
it is equal to the binomial coefficient

(
N
s1

)
. This tells us that:

Z =
N∑

s1=0

(
N

s1

)
e−βs1E1e−β(N−s1)E2 (2.7)

The binomial theorem tells us that the right hand side of this expression is the series expansion of a
binomial in e−βE1 and e−βE2 . The series subsequently evaluates to the following:

Z =
(
e−βE1 + e−βE2

)N
(2.8)

Note: This is a very important result. The preceding argument can be generalized to tell us that the
partition function of a system made up of non-interacting subsystems is equal to the product of the par-
tition function of the subsystems.

The average energy U of the system is given by:

U = − 1

Z

∂Z

∂β
(2.9)

Substituting in our expression for the partition function:

U = − 1

(e−βE1 + e−βE2)N
∂

∂β

(
e−βE1 + e−βE2

)N
(2.10)
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Next, we evaluate the derivative and simplify, which yields:

U =
N(E1e

−E1/kBT + E2e
−E2/kBT )

e−E1/kBT + e−E2/kBT
(2.11)

Does this make sense? This is the result we would naively expect, as it is just the probability
weighted average of the energies.

Next, we shall calculate the specific heat at constant volume CV . By definition, we know that:

CV (T ) =

(
∂U

∂T

)
V

(2.12)

In terms of β, we can write this as:

CV (T ) = − 1

kBT 2

(
∂U

∂β

)
V

(2.13)

Substituting in our expression for the internal energy, we find:

CV (T ) = − N

kBT 2

∂

∂β

E1e
−βE1 + E2e

−βE2

e−βE1 + e−βE2
(2.14)

We can now use the quotient rule to evaluate the derivative:

CV (T ) =
N

[
(E1e

−βE1 + E2e
−βE2)2 − (E2

1e
−βE1 + E2

2e
−βE2)(e−βE1 + e−βE2)

]
kBT 2(e−βE1 + e−βE2)2

(2.15)

We can now simplify this expression to obtain the following:

CV (T ) =
N(E1 − E2)

2

kBT 2(e(E1−E2)/2kBT + e(E2−E1)/2kBT )2
(2.16)

(b) Find the expressions for U and CV in the limit where T is very large. That is, find the limit as T goes
to infinity along with the first nonvanishing correction for very large but finite T .

To find the limiting behavior of the expressions obtained in the previous part, it is useful to write them as
hyperbolic trigonometric functions. We can rewrite our expression for U as:

U =
N(E1e

β(E2−E1)/2 + E2e
β(E1−E2)/2)

e−β(E1−E2)/2 + e−β(E2−E1)/2
(2.17)

Comparing the denominator to the definition of the hyperbolic cosine, we see that:

U =
N

2
sech

(
β(E1 − E2)

2

)(
E1 + E2

2
e−β(E1−E2)/2 +

E1 − E2

2
e−β(E1−E2)/2

+
E1 + E2

2
eβ(E1−E2)/2 +

E2 − E1

2
eβ(E1−E2)/2

) (2.18)
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Next, we can write the quantities inside the parentheses in terms of hyperbolic trigonometric functions,
which yields:

U =
N(E1 + E2)

2
+

N(E1 − E2)

2
tanh

(
β(E2 − E1)

2

)
(2.19)

We now expand this expression about β = 0, which, to leading order, gives us the equation:

U ≈ N(E1 + E2)

2
− N(E1 − E2)

2

4
sech2(0)β (2.20)

Thus, we conclude that in the large temperature regime, the average energy is given by:

U(T ) ≈ N(E1 + E2)

2
− N(E1 − E2)

2

4kBT
(2.21)

Does this make sense? In the inifinite temperature limit, there is an equal probability of being in ei-
ther of the two states. Thus, the leading order term must be the average of the two energies multiplied
by the number of particles. In the finite temperature regime, there is a higher probability of particles be-
ing in a lower energy state, with a weight that only depends on the energy difference between the two
states, which results in a negative correction to the leading order term. Notice further that this correc-
tion will be the same regardless of whether E1 or E2 has a greater energy, so it must be invariant under
their exchange. This, combined with the fact that the term must have dimensions of energy means that
it must be quadratic in the energy difference.

We shall now perform a similar procedure with the specific heat. Rewriting our expression from the
previous part in terms of hyperbolic trigonometric functions, we have:

CV (T ) =
NkB(E1 − E2)

2β2

4
sech2

(
β(E1 − E2)

2

)
(2.22)

Firt, we recognize that as β goes to zero, this expression vanishes. Notice that the only dependence on β
that is not in the form of a polynomial comes from the hyperbolic secant. Then, we only need to expand
that term about β = 0. Notice that:

sechx =
2

e−x + ex
≈ 2

2 + 2x+O(x2)
= 1 +O(x) (2.23)

Then, to lowest non-trivial order, we have:

CV (T ) ≈
NkB(E1 − E2)

2

4kBT 2
(2.24)

Does this make sense? In the inifinite temperature limit, an increase in temperature does not affect
the state populations, and subsequently does not alter the energy of the system. Thus, the leading order
term must vanish. In the finite temperature regime an increase in temperature will change the probabili-
ties of state population according to the difference in the energies. Using a similar argument as with the
average energy, we see that the first non-trivial term must depend on the energies as some function of
(E1 − E2)

2.
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